Slow crossover to Kardar-Parisi-Zhang scaling
نویسندگان
چکیده
منابع مشابه
Slow crossover to Kardar-Parisi-Zhang scaling.
The Kardar-Parisi-Zhang (KPZ) equation is accepted as a generic description of interfacial growth. In several recent studies, however, values of the roughness exponent alpha have been reported that are significantly less than that associated with the KPZ equation. A feature common to these studies is the presence of holes (bubbles and overhangs) in the bulk and an interface that is smeared out....
متن کاملCrossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
We simulated a growth model in (1+1) dimensions in which particles are aggregated according to the rules of ballistic deposition with probability p or according to the rules of random deposition with surface relaxation (Family model) with probability 1-p. For any p>0, this system is in the Kardar-Parisi-Zhang (KPZ) universality class, but it presents a slow crossover from the Edwards-Wilkinson ...
متن کاملA Modified Kardar–parisi–zhang Model
A one dimensional stochastic differential equation of the form dX = AXdt+ 1 2 (−A) ∂ξ[((−A)X)]dt+ ∂ξdW (t), X(0) = x is considered, where A = 1 2∂ 2 ξ . The equation is equipped with periodic boundary conditions. When α = 0 this equation arises in the Kardar–Parisi–Zhang model. For α 6= 0, this equation conserves two important properties of the Kardar–Parisi–Zhang model: it contains a quadratic...
متن کاملCrossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class.
This Letter reports on how the interfaces in the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) class undergo, in the course of time, a transition from the flat, growing regime to the stationary one. Simulations of the polynuclear growth model and experiments on turbulent liquid crystal reveal universal functions of the KPZ class governing this transition, which connect the distribution and correl...
متن کاملStrong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation.
We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods. In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even at noninteger dimensions. Apart from the well-known weak-coupling and the now...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2001
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.64.051101